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From programs to cyber-physical systems

• Programs: 

◊ mappings states to states or data to data, 

◊ supposed to terminate (exception OS),

◊ time and interaction (often) not an issue,

◊ concept of computation: Turing machines – algorithms

• Cyber-physical systems: 

◊ connected to the physical world, 

◊ need a coherent model of context, interface, interaction, time, 
architecture, state, probability, data and event flow,
perhaps even space, geometry and 
movement

◊ concept of computation: interaction,
generalized timed Mealy machines

◊ extensive requirements for 
dependability
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The key role of requirements engineering (RE) in SSE

• RE is a key to software & systems engineering (SSE)

• Functionality

◊ what is the needed functionality

◊ do systems offer the needed functionality

◊ are unneeded functions excluded

◊ Functional quality

• usability: is the functionality  easy to access

• safety and security

• …

• Nonfunctional quality

◊ Reusability

◊ Changeability

◊ Portability

◊ …
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Making requirements explicit

When do we decide about 
requirements?

• Up front: Before we start 
implementation?

• Iterative and incremental: 
While we carry out 
implementation?

• After mortem: after 
implementation?

• Not at all: No distinction 
between implementation and 
requirements: It is the code 
that counts!

Do we distinguish between
• the system as required
• the  system as 

implemented?

If yes, we need 
documentation!
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The challenge: machine learning

• Neuronal net learns from a training set

◊ The training set is chosen according to the required functionality

• Result is an algorithm – being a black box

◊ No spec

◊ No verification
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Agile development: finding requirements on the way

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Questions

• Where is the decision about the requirements?

• How are requirements documented?
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The roles in RE: who decides what!

• Product manager

◊ Decides about the goals and the key requirements

• Requirements engineer

◊ Responsible for the methodology applied and

◊ The quality of the requirements artifacts

• Requirements manager

◊ Responsible for the requirements life cycle

• Architect

◊ Responsible for reflecting the requirements in the overall system 
structure

• The verifier (tester)

◊ Needs requirements to define test cases

• Stakeholders requirement and sources

◊ Bring in their needs and expectations
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Deficiencies in practice

• Wrong assumptions about functionality: 

◊ high discrepancies between expected use and effective use

• Role of a requirements engineer or a product manager missing

◊ Product managers and architects responsible for requirements

• Requirements incomplete and description inadequate

◊ missing structuring

• Requirements not reviewed and not validated

• Requirements finally not documented

◊ Documentation not updated

◊ In software evolution unclear what is required

• Verification starts too late

◊ Only during test case engineering insufficient requirements identified
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Crucial Aspects of Requirements Engineering

• Requirements – Quality in Use

◊ Functionality

◊ MMI

◊ External Quality

• Architecture 

◊ Structuring

◊ Modularity

◊ Reusability

• Quality

◊ External

◊ Internal 

• Evolution

◊ Time to market
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The challenges

• To find out what is actually needed and what is feasible –
innovation: who knows – design thinking 

◊ Which functionality

◊ Usability

◊ New ideas

• Having a prototype – how do we know what is essential

◊ Identifying requirements – elicitation

• Achieving structured requirements

◊ Functional architecture – use cases – detailed specification 

• Real time

◊ Functional quality: safety, reliability, security, usability

• Probabilities

◊ Quality beyond functionality

• Managing requirements: implementation, verification, change 
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Design thinking – exploring options 

Design thinking uses the designer’s sensibility and methods to 
match people’s needs with what is technologically feasible and 
what a viable business strategy can convert into customer value 
and market opportunity‘

Design  thinking –
find innovative functionality 
and usability –
user centric engineering

The life cycle:
Validate

Validate

The missing link: How 
to extract from the 
prototype the 
requirements 

Prototype
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Why: the business case

Why is it interesting to develop a specific functionality: the 
business case - innovation

• Individual solution

◊ higher efficiency

◊ higher quality

• Standard product

◊ innovative functionality

• Embedded

◊ better product
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Aspects (attributes) of requirements

• Characteristic

◊ Functional or quality

• Level of detail

◊ From abstract to concrete

• Ways to express it

◊ from informal to semiformal to formal

• Source

◊ Where it came from

• Significance

◊ Must or may

• Status

◊ Accepted, implemented, verified
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System and its context
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From the informal to the formal

• In the beginning, properties of the universe of discourse are 
formulated in natural language, in general

“The airbag is activated within 200 msec whenever the crash sensor 
indicates a crash”

• The step to the formal means

◊ Derivation of a “data” model: Introducing a set of attributes forming an 
ontology

◊ Capturing properties by assertions in terms of these attributes

• This step into formalization has two aspects

◊ Abstraction: the attributes can only address a limited set of properties

◊ Precision: informal properties are made precise
This includes

• Decisions: there are usually several ways to make an informal property precise
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Example: Assertions

• For a simple universe of discourse Car representing cars, 
consider attributes such as

length: Car  IN

number_of_seats: Car  IN

speed: Car  IN

situation: Car  {city, country, high_way}

• Based on the attributes, given d  Car, we write logical 
expressions such as

speed(d)  50  situation(d) = city

• This notation can be simplified for a fixed car d:

speed  50  situation = city

• Such a logical expression referring to the attributes of the 
elements of the considered universe is called assertion. 
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Discrete systems: the system modeling theory

Sets  of typed channels 

 I = {x1 : T1, x2 : T2, ... } 

 O = {y1 : T’1, y2 : T’2, ... } 

syntactic interface 

(I u O) 

data stream of type T 

STREAM[T] = {IN\{0} ® T*}  

valuation of channel set C 

[C]  = {C ® STREAM[T]} 

interface behaviour for syn. interface (I u O) 

[ I u O]  = {[ I]  ® Ã([O] )} 

Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

channel name channel type
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System Specification by Interface Assertions

Interface Assertion 

• Given a syntactic interface (IO) with 

◊ a set I of typed input channels and 

◊ a set O of typed output channels, 

The channels form attributes in assertions.

• an interface assertion is a logical formula with the channel 
identifiers in I and O as free logical variables denoting streams 
of the respective types.
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Example: Component interface specification

 
A transmission component TMC 

 
TMC 

  in    x: T 

  out  y: T 

  x ~ y 

 

x ~ y º (" m Î T: m#x = m#y) 

TMC

x ~ y 

x:T y:T

Input channel

Output channel

Interface assertion

Spec name



Representing Artifacts by Assertions: 

Functional Specification – Feature Specification
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How to structure system functionality?

• Typically systems offer a rich functionality structured into 
functional features

• A functional feature can be represented by some interface 
behavior [IuO]

• Interface behavior of functional features can be composed the 
same way as sub-systems are composed

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3
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What is a feature …

• Is a feature just a name … ?

◊ If yes – for what?

◊ What is the relation of a feature tree to system models?

• What are relation between features?

◊ Feature interactions?

◊ Requires?

◊ Excludes?

• Is there a way to model features?

◊ How can we find and identify features of a system?

◊ What is the semantic interpretation of a feature tree?

• Is there a way to interpret relations between features such as 
feature interactions?
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Functional (Behavioral) Features

We concentrate on functional (behavioral) features!

◊ These are at the level of system level interface behavior!

• A (functional) feature is a sub-function of a multi-functional 
system

◊ that serves a certain purpose



Manfred Broy 24REConf, Munich March 2018 

Modeling functional (behavioral) features

• We give a interpretation of the notion of a (functional) feature 
in terms of the system interface model F  [IuO]

• The functionality of a system is modeled by its interface 
behavior

• A (functional) feature is modeled by the 

◊ projection applied to F to the sub-interface (I’O’) resulting in a sub-
interface behavior F’  [I’O’] 

◊ absence of feature interactions is modeled by faithful projections

◊ feature interactions are modeled by modes
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Modularity: Rules of compositions for interface specs

  
 

F1 

  in    x1, z21: T 

  out  y1, z12: T 

  S1 
 

  
 

F2 

  in    x2, z12: T 

  out  y2, z21: T 

  S2 
 

  
F1ÄF2 

x2 

y2 z12 

z21 y1 

x1 
F1 

 
 

S1 

F2 
 
 

S2 

  
 

F1ÄF2 
  in    x1, x2: T 

  out  y1, y2: T 

 
 

  
 

F1ÄF2 
  in    x1, x2: T 

  out  y1, y2: T 

$ z12, z21: S1 Ù S2 
 



Feature Specification – Constructive Approach
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Combining Functions without Interference

Given two functions F1 and F2 in isolation

We want to combine them into a function F1  F2
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Combining Functions without Interference

Their isolated combination
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Combining Functions with Feature Interaction 

If services F1 and F2 have feature interaction we get:

We explain the functional combination F1  F2 as a

refinement step
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The steps of function combination

Given the isolated function F1

We construct a refinement F’1

And combine F’1 with a refinement F’2 of F2



Feature Specification – Analytic Approach
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From overall syntactic system interfaces …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3
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to …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3
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sub-interfaces

F: Systemx1 : T1

x4 : T4

x2 : T2

y2 : T’2

y3 : T’3
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Projection of assertions describing features

Given: 

 (I’ u O’) subtype (I u O) 

and interface assertion S for syntactic interface (I� O); we 

define its projection onto the feature with the syntactic 
interface (I’ u O’) by 

$ I\I’, O\O’: S 

The projection is called faithful, if 

 ($ I\I’, O\O’: S) Û ($ O\O’: S) 

Then the feature with syntactic interface (I’ u O’) is free of 
feature interactions. 
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Example: Component interface specification – Airbag Controller

 
An air bag controller 

 
AB_Cont 

  in    x: T 

  out  y: T 

  x >200> y 

 

x >200> y º (" t Î Time:   

     crash_sig Î x(t) Û act_airbag Î y(t+200)) 

AB_Cont

x >200> y 

x:{crash_sig} y:{act_airbag}
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Example: Component interface specification – Airbag Controller

 
An air bag controller 

 
AB_Cont 

  in    x: T, m: {on, off} 

  out  y: T 

  x >200> y 

 

x >200> y º (" t Î Time:   

(ON(m, t+199) Ù crash_sig Î x(t)) Û act_airbag Î y(t+200) 

AB_Cont

x >200> y 

x:{crash_sig} y:{act_airbag}

m:{on, off}

ON(m, t) = if t = 0 then false elif on  m(t) then true 
elif off  m(t) then false else ON(m, t-1) fi
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Specifying Functional Architectures by Assertions 

Given composable features f  F with specified by interface 
assertions Bf the assertion of the functional specification reads

 {Bf: f  F}

and the interface assertion of the composed is given by hiding 
the mode channels in M

 M:  {Bf: f  F}



Manfred Broy 39REConf, Munich March 2018 

An interpreted feature tree

 F1, ..., n 

 

 F1, 2          ... Fk, k+1          ... Fn-1, n 

 

 F1 F2          ... Fk Fk+1          ... Fn-1 Fn 
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Feature interaction in the architecture view

Taken from: 
A. Vogelsang: Model-based Requirements Engineering 
for Multifunctional Systems. PH. D. Dissertation, 
Technische Universität München, Fakultät für 
Informatik, 2014 



System Properties at Different Levels of Abstractions: 

Relating Views
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Example: Relating Levels of Abstraction 

… 

 

crash Û crash_sensor 

 

air_bag Û activate_air_bag 
 

… 
 

 

Translator 
… 

 

crash Þ air_bag 
 

… 
 

Logical_level 

… 
 

crash_sensor Þ  
      activate_air_bag 

 
… 

Technical_level 
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Example: Relating Levels of Abstraction 

… 

 

crash Û crash_sensor 

 

air_bag Û activate_air_bag 
 

… 
 

 

Translator 
… 

 

crash Þ air_bag 
 

… 
 

Logical_level 

… 
 

crash_sensor Þ  
      activate_air_bag 

 
… 

Technical_level 
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Why translators are useful?

• Translators relate requirements in terms of assertions to 
technical/physical assertions

• They force us to make explicit assumptions behind 
physical/technical designs

◊ As part of specifications

◊ To validate them – to discover invalid assumptions

• Thrust reversal can only be activated, if airplane is on the 
ground

• Sensor AoG yields true if and only if airplane is on the ground

• AoG  Thrust reversal cannot be activated
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Example: derived Link between two Ontologies

S1: …

…

Sj: Sensor AoG yields

true if and only if

airplane is on the

ground

Sj+1: AoG  Thrust

reversal cannot be

activated

…

Specification
R1: …

…

Rk: Thrust reversal can

only be activated, if

airplane is on the

ground

…

Requirements



Traceability in Software and System Development
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Illustration: Tracing

 
  Requirements Specification Architecture Implementation 

 

intra-artifact link inter-artifact link

trace
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Illustration: Forward Tracing

  Requirements Specification Architecture Implementation 
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Illustration: Backward Tracing

  Requirements Specification Architecture Implementation 
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Meaning of Links and Traces

A link relates two syntactic named content chunks – formalized 
as assertions

• A link has a meaning that usually is related to the meaning of 
the assertions it relates. 

• A link states a proposition about the relationship between its 
source and its target. 

• A link can be valid or invalid. 

◊ It is called valid, if the proposition associated with the link is true. 

◊ Otherwise it is called invalid. 



Three Artifacts
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Three Levels of System Specification

• Requirements - system level

◊ List of requirements - functional system property

◊ Example: “The activation of safety relevant functions by the pilot is always 
double checked for plausibility by the system .“

• Functional specification - system level 

◊ decomposition of system functionality in hierarchy of (sub-)functions

◊ Specification of (sub-)functions

◊ Specification of dependencies (feature interactions) between (sub-) functions 
based on a mode concept

◊ Example: “Thrust reversal may only be activated, if the plane is on the 
ground.“

• Architecture specification - component level

◊ decomposition a systems in sub-systems (component)

◊ relationship to data flow diagram

◊ interface specification of component

◊ Example: “The weight sensor indicates that the plane is on the ground.“
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Illustrating Examples: Content Chunks

• System level requirements (functional requirements)

“the car must not increase its speed without user’s control”

• System level functional specification

“the function acc (adaptive cruise control) accelerates the car up to the 
speed selected by the user, provided no obstacles are recognized in front” 

• Architecture specification

“the radar signal based sensor measures the distance to the car in front and 
sends it to the acc monitor every 100 ms” 

To formalize these statements by assertions we need appropriate 
ontologies on all three levels

In development we want to relate them by refinement or tracing
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From content chunks to assertions

• To go from content chunks such as

“the car must not increase its speed without user’s control”

“the function acc (adaptive cruise control) accelerates the car up to the 
speed selected by the user, provided no obstacles are recognized in front” 

needs modeling and formalization.

This involves the following steps

• Formalizing the elements of the universe – elicitation of the 
problem domain

◊ Selecting the attributes

◊ Defining basic propositions (called the problem domain theory)

(speed ≤ 500)

• Expressing the informal statement by an assertion
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Three levels of system description in logic

• system level requirements

A =  {Ar: r  R}

• functional specification at system level - functionality

B =  {Bf: f  F}

• architecture specification

C =  {Ck: k  K}

• Correctness

◊ functional specification correct w.r.t to requirements: 

B  A

◊ architecture correct w.r.t to functional spec (let M be the set of 
mode channels): 

C   M: B
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Relational view: Inter-artifact links and traces

Functional RequirementSafety Priority Component Function

A1 ... Yes high

A2 ... No medium

An ... no low



Manfred Broy 57REConf, Munich March 2018 

Illustration: correctness and refinement

  Requirements Specification Architecture Implementation 

every assertion in the 
specification has to be 
guaranteed by the assertions 
of the architecture 

Can we find 
and identify  
them?

  
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Relationship: req spec to function spec - tracing

  

system level reqs  

A1 A2 A3 A4 A5 A6 A7 A8 A9    .  .  .   Ak 

sub-function reqs                  

B1                  

B2                  

B3                  

                  

                  

                  

...                  

                  

                  

                  

                  

Bn                  

 

Red: Bi is strong guarantor of Aj

Yellow: Bi is weak guarantor of Aj

Green: Bi is not a weak guarantor of Aj



Manfred Broy 59REConf, Munich March 2018 

Relationship: architecture to requirements

  

system level reqs  

A1 A2 A3 A4 A5 A6 A7 A8 A9    .  .  .   Ak 

sub-system reqs                  

C1                  

C2                  

C3                  

                  

                  

                  

...                  

                  

                  

                  

                  

Cn                  

 

Red: Ci is strong guarantor of Aj

Yellow: Ci is weak guarantor of Aj

Green: Ci is not a weak guarantor of Aj
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Interfaces with assumptions

Often, in an interface specification for the syntactic interface 
(IO) we include

• an assumption asu(y, x) which is a specification of the inverse
interface (OI) and defines properties of the context

• a commitment cmt(y, x) which is a specification of the 
behavior the syntactic interface (IO) as long as the 

assumption is fulfilled.

this leads to the specification

asu(y, x)  cmt(y, x) 
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Example: System interface specification

 

A transmission component TMCWA 

 
TMCWA 

  in    x: T 

  out  y: T 

 assume  " t Î IN: #x¯t ≤ 1+#y¯t 

 commit  " m Î T: m#x = m#y 

 
 

TMCWAx:T y:T
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Example: System interface specification

 

A transmission component TMCWA 

 
TMCWA 

  in    x: T 

  out  y: T 

  asu(x, y) Þ x ~ y 

 

x ~ y º (" m Î T: m#x = m#y) 

asu(x, y) º (" t Î IN: #x¯t ≤ 1+#y¯t) 
 

TMCWA

asu(x, y) 


x ~ y

x:T y:T

We speak of a contract
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Quality model: functional requirements – conventional view
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Quality model: functional requirements – novel view
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Classification

• Functional requirements: logical and probabilistic interface 
behavior (including faults):

◊ functional features

◊ safety

◊ reliability

◊ …

• Architectural requirements: logical and probabilistic sub-system 
interface behavior (including faults)
Quality requirements such as:

◊ Performance

◊ Security

• Requirements related to system context

◊ Usability 

◊ Business - Return on investment
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Conclusion

Probability

• Probabilistic system models and specifications are refinements of 
nondeterministic system models and specifications 

• A rich set of so-called “non-functional” properties is captures by 
probabilistic interface specifications and thus become functional

Time

• Time-aware system models and specifications are refinements of non-time-
aware system models and specifications 

• For time critical systems so-called “non-functional” timing properties can be 
captured by by time-aware interface specifications and thus become 
functional

Performance

• There are two concepts of performance: 
◊ response time (in the case of non-time critical functionality)

◊ efficient utilization of resources

• Response time is a functional property captured by time-aware probabilistic 
interface specifications 


