
Technische Universität

München

Institut for Informatics 	

Requirements Engineering and Design
Thinking:

From why and why ever to what and how

Manfred Broy

Manfred Broy 2REConf, Munich March 2018

From programs to cyber-physical systems

• Programs:

◊ mappings states to states or data to data,

◊ supposed to terminate (exception OS),

◊ time and interaction (often) not an issue,

◊ concept of computation: Turing machines – algorithms

• Cyber-physical systems:

◊ connected to the physical world,

◊ need a coherent model of context, interface, interaction, time,
architecture, state, probability, data and event flow,
perhaps even space, geometry and
movement

◊ concept of computation: interaction,
generalized timed Mealy machines

◊ extensive requirements for
dependability

Manfred Broy 3REConf, Munich March 2018

The key role of requirements engineering (RE) in SSE

• RE is a key to software & systems engineering (SSE)

• Functionality

◊ what is the needed functionality

◊ do systems offer the needed functionality

◊ are unneeded functions excluded

◊ Functional quality

• usability: is the functionality easy to access

• safety and security

• …

• Nonfunctional quality

◊ Reusability

◊ Changeability

◊ Portability

◊ …

Manfred Broy 4REConf, Munich March 2018

Making requirements explicit

When do we decide about
requirements?

• Up front: Before we start
implementation?

• Iterative and incremental:
While we carry out
implementation?

• After mortem: after
implementation?

• Not at all: No distinction
between implementation and
requirements: It is the code
that counts!

Do we distinguish between
• the system as required
• the system as

implemented?

If yes, we need
documentation!

Manfred Broy 5REConf, Munich March 2018

The challenge: machine learning

• Neuronal net learns from a training set

◊ The training set is chosen according to the required functionality

• Result is an algorithm – being a black box

◊ No spec

◊ No verification

Manfred Broy 6REConf, Munich March 2018

Agile development: finding requirements on the way

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Questions

• Where is the decision about the requirements?

• How are requirements documented?

Manfred Broy 7REConf, Munich March 2018

The roles in RE: who decides what!

• Product manager

◊ Decides about the goals and the key requirements

• Requirements engineer

◊ Responsible for the methodology applied and

◊ The quality of the requirements artifacts

• Requirements manager

◊ Responsible for the requirements life cycle

• Architect

◊ Responsible for reflecting the requirements in the overall system
structure

• The verifier (tester)

◊ Needs requirements to define test cases

• Stakeholders requirement and sources

◊ Bring in their needs and expectations

Manfred Broy 8REConf, Munich March 2018

Deficiencies in practice

• Wrong assumptions about functionality:

◊ high discrepancies between expected use and effective use

• Role of a requirements engineer or a product manager missing

◊ Product managers and architects responsible for requirements

• Requirements incomplete and description inadequate

◊ missing structuring

• Requirements not reviewed and not validated

• Requirements finally not documented

◊ Documentation not updated

◊ In software evolution unclear what is required

• Verification starts too late

◊ Only during test case engineering insufficient requirements identified

Manfred Broy 9REConf, Munich March 2018

Crucial Aspects of Requirements Engineering

• Requirements – Quality in Use

◊ Functionality

◊ MMI

◊ External Quality

• Architecture

◊ Structuring

◊ Modularity

◊ Reusability

• Quality

◊ External

◊ Internal

• Evolution

◊ Time to market

Manfred Broy 10REConf, Munich March 2018

The challenges

• To find out what is actually needed and what is feasible –
innovation: who knows – design thinking

◊ Which functionality

◊ Usability

◊ New ideas

• Having a prototype – how do we know what is essential

◊ Identifying requirements – elicitation

• Achieving structured requirements

◊ Functional architecture – use cases – detailed specification

• Real time

◊ Functional quality: safety, reliability, security, usability

• Probabilities

◊ Quality beyond functionality

• Managing requirements: implementation, verification, change

Manfred Broy 11REConf, Munich March 2018

Design thinking – exploring options

Design thinking uses the designer’s sensibility and methods to
match people’s needs with what is technologically feasible and
what a viable business strategy can convert into customer value
and market opportunity‘

Design thinking –
find innovative functionality
and usability –
user centric engineering

The life cycle:
Validate

Validate

The missing link: How
to extract from the
prototype the
requirements

Prototype

Manfred Broy 12REConf, Munich March 2018

Why: the business case

Why is it interesting to develop a specific functionality: the
business case - innovation

• Individual solution

◊ higher efficiency

◊ higher quality

• Standard product

◊ innovative functionality

• Embedded

◊ better product

Manfred Broy 13REConf, Munich March 2018

Aspects (attributes) of requirements

• Characteristic

◊ Functional or quality

• Level of detail

◊ From abstract to concrete

• Ways to express it

◊ from informal to semiformal to formal

• Source

◊ Where it came from

• Significance

◊ Must or may

• Status

◊ Accepted, implemented, verified

Manfred Broy 14REConf, Munich March 2018

System and its context

Manfred Broy 15REConf, Munich March 2018

From the informal to the formal

• In the beginning, properties of the universe of discourse are
formulated in natural language, in general

“The airbag is activated within 200 msec whenever the crash sensor
indicates a crash”

• The step to the formal means

◊ Derivation of a “data” model: Introducing a set of attributes forming an
ontology

◊ Capturing properties by assertions in terms of these attributes

• This step into formalization has two aspects

◊ Abstraction: the attributes can only address a limited set of properties

◊ Precision: informal properties are made precise
This includes

• Decisions: there are usually several ways to make an informal property precise

Manfred Broy 16REConf, Munich March 2018

Example: Assertions

• For a simple universe of discourse Car representing cars,
consider attributes such as

length: Car  IN

number_of_seats: Car  IN

speed: Car  IN

situation: Car  {city, country, high_way}

• Based on the attributes, given d  Car, we write logical
expressions such as

speed(d)  50  situation(d) = city

• This notation can be simplified for a fixed car d:

speed  50  situation = city

• Such a logical expression referring to the attributes of the
elements of the considered universe is called assertion.

Manfred Broy 17REConf, Munich March 2018

Discrete systems: the system modeling theory

Sets of typed channels

 I = {x1 : T1, x2 : T2, ... }

 O = {y1 : T’1, y2 : T’2, ... }

syntactic interface

(I u O)

data stream of type T

STREAM[T] = {IN\{0} ® T*}

valuation of channel set C

[C] = {C ® STREAM[T]}

interface behaviour for syn. interface (I u O)

[I u O] = {[I] ® Ã([O])}

Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

channel name channel type

Manfred Broy 18REConf, Munich March 2018

System Specification by Interface Assertions

Interface Assertion

• Given a syntactic interface (IO) with

◊ a set I of typed input channels and

◊ a set O of typed output channels,

The channels form attributes in assertions.

• an interface assertion is a logical formula with the channel
identifiers in I and O as free logical variables denoting streams
of the respective types.

Manfred Broy 19REConf, Munich March 2018

Example: Component interface specification

A transmission component TMC

TMC

 in x: T

 out y: T

 x ~ y

x ~ y º (" m Î T: m#x = m#y)

TMC

x ~ y

x:T y:T

Input channel

Output channel

Interface assertion

Spec name

Representing Artifacts by Assertions:

Functional Specification – Feature Specification

Manfred Broy 21REConf, Munich March 2018

How to structure system functionality?

• Typically systems offer a rich functionality structured into
functional features

• A functional feature can be represented by some interface
behavior [IuO]

• Interface behavior of functional features can be composed the
same way as sub-systems are composed

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Manfred Broy 22REConf, Munich March 2018

What is a feature …

• Is a feature just a name … ?

◊ If yes – for what?

◊ What is the relation of a feature tree to system models?

• What are relation between features?

◊ Feature interactions?

◊ Requires?

◊ Excludes?

• Is there a way to model features?

◊ How can we find and identify features of a system?

◊ What is the semantic interpretation of a feature tree?

• Is there a way to interpret relations between features such as
feature interactions?

Manfred Broy 23REConf, Munich March 2018

Functional (Behavioral) Features

We concentrate on functional (behavioral) features!

◊ These are at the level of system level interface behavior!

• A (functional) feature is a sub-function of a multi-functional
system

◊ that serves a certain purpose

Manfred Broy 24REConf, Munich March 2018

Modeling functional (behavioral) features

• We give a interpretation of the notion of a (functional) feature
in terms of the system interface model F  [IuO]

• The functionality of a system is modeled by its interface
behavior

• A (functional) feature is modeled by the

◊ projection applied to F to the sub-interface (I’O’) resulting in a sub-
interface behavior F’  [I’O’]

◊ absence of feature interactions is modeled by faithful projections

◊ feature interactions are modeled by modes

Manfred Broy 25REConf, Munich March 2018

Modularity: Rules of compositions for interface specs

F1

 in x1, z21: T

 out y1, z12: T

 S1

F2

 in x2, z12: T

 out y2, z21: T

 S2

F1ÄF2

x2

y2 z12

z21 y1

x1
F1

S1

F2

S2

F1ÄF2
 in x1, x2: T

 out y1, y2: T

F1ÄF2
 in x1, x2: T

 out y1, y2: T

$ z12, z21: S1 Ù S2

Feature Specification – Constructive Approach

Manfred Broy 27REConf, Munich March 2018

Combining Functions without Interference

Given two functions F1 and F2 in isolation

We want to combine them into a function F1  F2

Manfred Broy 28REConf, Munich March 2018

Combining Functions without Interference

Their isolated combination

Manfred Broy 29REConf, Munich March 2018

Combining Functions with Feature Interaction

If services F1 and F2 have feature interaction we get:

We explain the functional combination F1  F2 as a

refinement step

Manfred Broy 30REConf, Munich March 2018

The steps of function combination

Given the isolated function F1

We construct a refinement F’1

And combine F’1 with a refinement F’2 of F2

Feature Specification – Analytic Approach

Manfred Broy 32REConf, Munich March 2018

From overall syntactic system interfaces …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Manfred Broy 33REConf, Munich March 2018

to …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3
x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Manfred Broy 34REConf, Munich March 2018

sub-interfaces

F: Systemx1 : T1

x4 : T4

x2 : T2

y2 : T’2

y3 : T’3

Manfred Broy 35REConf, Munich March 2018

Projection of assertions describing features

Given:

 (I’ u O’) subtype (I u O)

and interface assertion S for syntactic interface (I� O); we

define its projection onto the feature with the syntactic
interface (I’ u O’) by

$ I\I’, O\O’: S

The projection is called faithful, if

 ($ I\I’, O\O’: S) Û ($ O\O’: S)

Then the feature with syntactic interface (I’ u O’) is free of
feature interactions.

Manfred Broy 36REConf, Munich March 2018

Example: Component interface specification – Airbag Controller

An air bag controller

AB_Cont

 in x: T

 out y: T

 x >200> y

x >200> y º (" t Î Time:

 crash_sig Î x(t) Û act_airbag Î y(t+200))

AB_Cont

x >200> y

x:{crash_sig} y:{act_airbag}

Manfred Broy 37REConf, Munich March 2018

Example: Component interface specification – Airbag Controller

An air bag controller

AB_Cont

 in x: T, m: {on, off}

 out y: T

 x >200> y

x >200> y º (" t Î Time:

(ON(m, t+199) Ù crash_sig Î x(t)) Û act_airbag Î y(t+200)

AB_Cont

x >200> y

x:{crash_sig} y:{act_airbag}

m:{on, off}

ON(m, t) = if t = 0 then false elif on  m(t) then true
elif off  m(t) then false else ON(m, t-1) fi

Manfred Broy 38REConf, Munich March 2018

Specifying Functional Architectures by Assertions

Given composable features f  F with specified by interface
assertions Bf the assertion of the functional specification reads

 {Bf: f  F}

and the interface assertion of the composed is given by hiding
the mode channels in M

 M:  {Bf: f  F}

Manfred Broy 39REConf, Munich March 2018

An interpreted feature tree

 F1, ..., n

 F1, 2 ... Fk, k+1 ... Fn-1, n

 F1 F2 ... Fk Fk+1 ... Fn-1 Fn

Manfred Broy 40REConf, Munich March 2018

Feature interaction in the architecture view

Taken from:
A. Vogelsang: Model-based Requirements Engineering
for Multifunctional Systems. PH. D. Dissertation,
Technische Universität München, Fakultät für
Informatik, 2014

System Properties at Different Levels of Abstractions:

Relating Views

Manfred Broy 42REConf, Munich March 2018

Example: Relating Levels of Abstraction

…

crash Û crash_sensor

air_bag Û activate_air_bag

…

Translator
…

crash Þ air_bag

…

Logical_level

…

crash_sensor Þ
 activate_air_bag

…

Technical_level

Manfred Broy 43REConf, Munich March 2018

Example: Relating Levels of Abstraction

…

crash Û crash_sensor

air_bag Û activate_air_bag

…

Translator
…

crash Þ air_bag

…

Logical_level

…

crash_sensor Þ
 activate_air_bag

…

Technical_level

Manfred Broy 44REConf, Munich March 2018

Why translators are useful?

• Translators relate requirements in terms of assertions to
technical/physical assertions

• They force us to make explicit assumptions behind
physical/technical designs

◊ As part of specifications

◊ To validate them – to discover invalid assumptions

• Thrust reversal can only be activated, if airplane is on the
ground

• Sensor AoG yields true if and only if airplane is on the ground

• AoG  Thrust reversal cannot be activated

Manfred Broy 45REConf, Munich March 2018

Example: derived Link between two Ontologies

S1: …

…

Sj: Sensor AoG yields

true if and only if

airplane is on the

ground

Sj+1: AoG  Thrust

reversal cannot be

activated

…

Specification
R1: …

…

Rk: Thrust reversal can

only be activated, if

airplane is on the

ground

…

Requirements

Traceability in Software and System Development

Manfred Broy 47REConf, Munich March 2018

Illustration: Tracing

 Requirements Specification Architecture Implementation

intra-artifact link inter-artifact link

trace

Manfred Broy 48REConf, Munich March 2018

Illustration: Forward Tracing

 Requirements Specification Architecture Implementation

Manfred Broy 49REConf, Munich March 2018

Illustration: Backward Tracing

 Requirements Specification Architecture Implementation

Manfred Broy 50REConf, Munich March 2018

Meaning of Links and Traces

A link relates two syntactic named content chunks – formalized
as assertions

• A link has a meaning that usually is related to the meaning of
the assertions it relates.

• A link states a proposition about the relationship between its
source and its target.

• A link can be valid or invalid.

◊ It is called valid, if the proposition associated with the link is true.

◊ Otherwise it is called invalid.

Three Artifacts

Manfred Broy 52REConf, Munich March 2018

Three Levels of System Specification

• Requirements - system level

◊ List of requirements - functional system property

◊ Example: “The activation of safety relevant functions by the pilot is always
double checked for plausibility by the system .“

• Functional specification - system level

◊ decomposition of system functionality in hierarchy of (sub-)functions

◊ Specification of (sub-)functions

◊ Specification of dependencies (feature interactions) between (sub-) functions
based on a mode concept

◊ Example: “Thrust reversal may only be activated, if the plane is on the
ground.“

• Architecture specification - component level

◊ decomposition a systems in sub-systems (component)

◊ relationship to data flow diagram

◊ interface specification of component

◊ Example: “The weight sensor indicates that the plane is on the ground.“

Manfred Broy 53REConf, Munich March 2018

Illustrating Examples: Content Chunks

• System level requirements (functional requirements)

“the car must not increase its speed without user’s control”

• System level functional specification

“the function acc (adaptive cruise control) accelerates the car up to the
speed selected by the user, provided no obstacles are recognized in front”

• Architecture specification

“the radar signal based sensor measures the distance to the car in front and
sends it to the acc monitor every 100 ms”

To formalize these statements by assertions we need appropriate
ontologies on all three levels

In development we want to relate them by refinement or tracing

Manfred Broy 54REConf, Munich March 2018

From content chunks to assertions

• To go from content chunks such as

“the car must not increase its speed without user’s control”

“the function acc (adaptive cruise control) accelerates the car up to the
speed selected by the user, provided no obstacles are recognized in front”

needs modeling and formalization.

This involves the following steps

• Formalizing the elements of the universe – elicitation of the
problem domain

◊ Selecting the attributes

◊ Defining basic propositions (called the problem domain theory)

(speed ≤ 500)

• Expressing the informal statement by an assertion

Manfred Broy 55REConf, Munich March 2018

Three levels of system description in logic

• system level requirements

A =  {Ar: r  R}

• functional specification at system level - functionality

B =  {Bf: f  F}

• architecture specification

C =  {Ck: k  K}

• Correctness

◊ functional specification correct w.r.t to requirements:

B  A

◊ architecture correct w.r.t to functional spec (let M be the set of
mode channels):

C   M: B

Manfred Broy 56REConf, Munich March 2018

Relational view: Inter-artifact links and traces

Functional RequirementSafety Priority Component Function

A1 ... Yes high

A2 ... No medium

An ... no low

Manfred Broy 57REConf, Munich March 2018

Illustration: correctness and refinement

 Requirements Specification Architecture Implementation

every assertion in the
specification has to be
guaranteed by the assertions
of the architecture

Can we find
and identify
them?

  

Manfred Broy 58REConf, Munich March 2018

Relationship: req spec to function spec - tracing

system level reqs

A1 A2 A3 A4 A5 A6 A7 A8 A9 . . . Ak

sub-function reqs

B1

B2

B3

...

Bn

Red: Bi is strong guarantor of Aj

Yellow: Bi is weak guarantor of Aj

Green: Bi is not a weak guarantor of Aj

Manfred Broy 59REConf, Munich March 2018

Relationship: architecture to requirements

system level reqs

A1 A2 A3 A4 A5 A6 A7 A8 A9 . . . Ak

sub-system reqs

C1

C2

C3

...

Cn

Red: Ci is strong guarantor of Aj

Yellow: Ci is weak guarantor of Aj

Green: Ci is not a weak guarantor of Aj

Manfred Broy 60REConf, Munich March 2018

Interfaces with assumptions

Often, in an interface specification for the syntactic interface
(IO) we include

• an assumption asu(y, x) which is a specification of the inverse
interface (OI) and defines properties of the context

• a commitment cmt(y, x) which is a specification of the
behavior the syntactic interface (IO) as long as the

assumption is fulfilled.

this leads to the specification

asu(y, x)  cmt(y, x)

Manfred Broy 61REConf, Munich March 2018

Example: System interface specification

A transmission component TMCWA

TMCWA

 in x: T

 out y: T

 assume " t Î IN: #x¯t ≤ 1+#y¯t

 commit " m Î T: m#x = m#y

TMCWAx:T y:T

Manfred Broy 62REConf, Munich March 2018

Example: System interface specification

A transmission component TMCWA

TMCWA

 in x: T

 out y: T

 asu(x, y) Þ x ~ y

x ~ y º (" m Î T: m#x = m#y)

asu(x, y) º (" t Î IN: #x¯t ≤ 1+#y¯t)

TMCWA

asu(x, y)


x ~ y

x:T y:T

We speak of a contract

Manfred Broy 63REConf, Munich March 2018

Quality model: functional requirements – conventional view

Manfred Broy 64REConf, Munich March 2018

Quality model: functional requirements – novel view

Manfred Broy 65REConf, Munich March 2018

Classification

• Functional requirements: logical and probabilistic interface
behavior (including faults):

◊ functional features

◊ safety

◊ reliability

◊ …

• Architectural requirements: logical and probabilistic sub-system
interface behavior (including faults)
Quality requirements such as:

◊ Performance

◊ Security

• Requirements related to system context

◊ Usability

◊ Business - Return on investment

Manfred Broy 66REConf, Munich March 2018

Conclusion

Probability

• Probabilistic system models and specifications are refinements of
nondeterministic system models and specifications

• A rich set of so-called “non-functional” properties is captures by
probabilistic interface specifications and thus become functional

Time

• Time-aware system models and specifications are refinements of non-time-
aware system models and specifications

• For time critical systems so-called “non-functional” timing properties can be
captured by by time-aware interface specifications and thus become
functional

Performance

• There are two concepts of performance:
◊ response time (in the case of non-time critical functionality)

◊ efficient utilization of resources

• Response time is a functional property captured by time-aware probabilistic
interface specifications

